Avoid a reaction
Understand and prevent glove-associated allergies p.24

Beyond arc flash protection
Protect hands from all possible exposures p.26

Reduce hand and arm injuries
Attend the 2016 Glove Symposium ... p.30

Defining risk
Assessing levels of abrasion, cut, tear & puncture exposure p.32

Enhanced protection
High-visibility materials offer extra protection p.36

Back-of-hand protection
Sonic welding, heat pressing & foam tech are latest trends p.37

One size doesn’t fit all
Break with tradition and match gloves to hazards p.39

Function, feel & protection
Glove innovators pursue performance & sustainability p.41

Hand protection products ... p.44
latex and non-latex disposable gloves are increasingly popular in industrial, chemical and food processing environments. Workers here face a challenge: many healthcare users of these gloves have coped with for decades: allergies tied to natural rubber latex or chemicals used in glove manufacturing.

Estimates suggest as much as six percent of the population is sensitive to natural rubber latex – that’s about 19 million people in the U.S. and 432 million worldwide.

Reactions can be serious – ranging from skin irritation and rashes to serious health issues that can end careers. Fortunately, it’s likely alternatives can help avoid an allergic reaction. The challenge: identify the allergy and find the right glove that provides the comfort, performance and protection required for the job.

Understanding allergies

There are two types of glove-associated allergies. Type I allergies are a reaction to proteins found in natural rubber latex and can range from allergic contact dermatitis to serious anaphylactic reactions, the most severe of which – while rare – can be life-threatening. Individuals also can become sensitized to natural rubber products. They may not initially suffer an allergic reaction but develop one in time with repeated use. A minor reaction may develop into a more serious one. Individuals wearing natural rubber latex gloves experiencing even minor reactions should stop using them.

Type IV allergies are a reaction to residual chemical irritants left from the glove manufacturing process. Type IV allergies are not life-threatening, but can trigger severe reactions and are more difficult to accurately diagnose. Different chemical combinations are used in production of gloves, so identifying the trigger for the allergy isn’t as simple as pointing to a latex glove.

There are three primary syn-
thetic material options:

- **Polyisoprene**: Most similar in performance to natural rubber latex with a high level of comfort, excellent elasticity and moderate strength.
- **Neoprene**: Characteristic performance falls between polyisoprene and nitrile with a good balance of comfort, strength and elasticity.
- **Nitrile**: Typically higher strength and puncture resistance than natural rubber latex but does sacrifice some elasticity.

Many natural rubber latex gloves include a powdered powder that can act as a carrier for allergenic latex proteins. That powder can become airborne and attach to or be inhaled by coworkers with latex allergies. Even a worker who switches to synthetic gloves could suffer allergic reactions to powder from a coworker’s gloves. If an individual with a Type I allergy is working close to coworkers using natural rubber latex gloves, the coworker should either switch to synthetic or to a powder-free latex glove. Type IV allergies: As discussed earlier, because there are many potential causative agents, finding an alternative for someone experiencing a Type IV reaction can be a complex challenge. The first step should be to look at chemical accelerators used in manufacturing the glove, because accelerators are the most common causative agent for Type IV reactions.

The best way to avoid accelerator-caused Type IV reactions is to use gloves manufactured without chemical accelerators. These gloves rely on a different process for vulcanization and produce a cleaner product that reduces or eliminates most allergic reactions. Of course, not all Type IV reactions are triggered by accelerators. The manufacturing process can either increase or reduce the likelihood of chemical allergic reactions. Responsible manufacturers eliminate residual chemicals through a leaching process that ensures the gloves are clean and less likely to trigger a reaction. But not all leaching processes are as effective as they should be. As a result, some gloves carry more residual chemicals, and the likelihood of skin reactions increases.

Finding the right fit

In any case of persistent dermatitis or allergic reaction triggered by glove use, the worker should see a physician for an accurate diagnosis. Determining which type of glove to use or any necessary treatment starts with understanding whether it’s a Type I or Type IV allergy. Let’s look at PPE options and recommended actions.

- **Type I allergy**: Switch to gloves made from synthetic materials.
- **Type IV allergy**: As previously stated, but don’t minimize the seriousness of an allergic reaction.

Complicated choice

Choosing the right gloves can be complicated, but it becomes less so with the proper information – and that includes a thorough understanding of glove-associated allergies and how to avoid them. Once you understand the nature of the allergy, any responsible glove manufacturer can help identify alternative gloves that do not compromise the comfort, performance and protection.
C3706 Single coated PCT™ coating
15%-20% More abrasion resistant than standard microfoam gloves
Breathable 15-gauge seamless nylon and spandex liner. Breathable, oil resistant single-dipped PCT™ coating.
Sizes Available: S, M, L, XL.
Dexterity Durability

C3707 Single coated PCT™ coating
+ 20% Palm dots add 20% more abrasion resistance!
Breathable 15-gauge seamless nylon and spandex liner. Breathable, oil resistant single-dipped PCT™ coating plus nitrile dots.
Sizes Available: S, M, L, XL.
Dexterity Durability

C3708 Double coated PCT™ coating
35%-40% More abrasion resistant than standard microfoam gloves
Breathable 13-gauge seamless nylon liner. Oil proof double-dipped PCT™ coating.
Sizes Available: S, M, L, XL.
Dexterity Durability

C3709 Double coated PCT™ coating
+ 20% Palm dots add 20% more abrasion resistance!
Breathable 13-gauge seamless nylon liner. Oil proof double-dipped PCT™ coating plus nitrile dots.
Sizes Available: S, M, L, XL.
Dexterity Durability

Outperforms Established Brands
GardWare™ PCT™ nitrile coated gloves consistently beat standard microfoam gloves in abrasion-resistance.

Oil Resistant/Oil Proof
Single-coated GardWare™ PCT™ gloves are oil resistant; double-coated styles are oil and waterproof.

Enhanced Slip Resistant Grip
PCT™ nitrile coatings provide the best grip in dry and wet/oily conditions, outperforming the grip of standard nitrile coated gloves by up to 40%.

Silicone Free
PCT™ nitrile coating is silicone free, keeping parts free from contamination.

Flexible / Durable
Comfortable snug fit, flexible coatings and ergonomic shaping reduce hand fatigue, improving comfort and productivity for all-day use.

Imported & Distributed by LFS GLOVE
Contact us for more information:
800-426-8860 • gloves@LFSglove.com
CIRCLE 25 FOR FREE INFO
Beyond arc flash protection
Protect hands from all possible exposures

By BILL SOELLNER

In 2012, the National Fire Protection Agency (NFPA) changed the way personal protective equipment is rated. Instead of only having a Flame-Resistant (FR) rating, now there’s an Arc Flash rating as well (denoted as AR, which stands for “Arc Rated”). This change evidently came about for a reason: in recent years, there has been a staggering number of arc flash incidents in the workplace, with many resulting in fatalities.

Although this type of hazard affects many workers each year, what is an arc flash? An arc flash occurs when an electrical current jumps from the desired electrical path, and travels through the air from one conductor to another. When this happens, anyone who is in the path of the discharge, or nearby, can become badly injured – or, frighteningly, even killed.

The best way to prevent these types of injuries is to educate yourself about arc flashes, their common causes, as well as how you can protect your workers from these types of excruciating electrical burns. Depending on the industry you work in, there are a large number of factors that can cause an arc flash to occur within your workplace. Make yourself aware of these risks and you can personally help minimize the occurrence of arc flash within your workplace.

In workplaces with high voltages or current machinery, some of the most common causes of arc flashes include the following: airborne dust particles that can provide a path for electrical currents; worn out or thinning insulation; corroded contacts; dropped or improperly used tools; improper or incomplete installation of equipment; and accidental human contact due to inappropriate gloves or other PPE.

The fact that arc flashes often occur because workers are wearing the wrong gloves (or other types of PPE) is something I’d like to draw your attention to in this article. It’s not only a huge factor in the frequency of arc flash occurrences, but it’s also extremely preventable.

The right gloves

In order to help minimize the risk of arc flash as well as the painful aftermath that accompanies it, I’ve compiled a list of everything you need to consider during your search for arc-rated hand protection. Here are my top six tips to help you ensure that your workers are wearing the right pair of work gloves.

1. Ensure employees are wearing flame-resistant PPE.

Though it may seem obvious, wearing gloves or other PPE that will burn, ignite, or fail to prevent heat damage is one of the absolute worst things that your employees can do in workplaces where arc flashes are a threat.

2. Anyone who works where sparks or flames are present should wear flame-retardant (FR) gloves.

It’s crucial that if your workers are going to be exposed to sparks or flames while they’re on the job that they wear flame-retardant gloves so that their hands are properly shielded. According to section 1910.132 (a), OSHA requires employers to provide appropriate hand protection to employees based on the hazards that they’ll be exposed to in their workplace; this includes all types of burn and flame hazards. Ensure all employees know it’s mandatory to wear the assigned PPE to
NEW ERGODYNE PROFLEX® TRADES GLOVES: HANDLE YOUR HAZARDS

IT’S ALL ABOUT PRODUCTIVITY-ENHANCING TECHNICAL FEATURES. AND OUR NEW PROFLEX® TRADES GLOVES ARE SO CHOCK FULL – THEY’D MAKE SIR TIM BERNERS LEE BLUSH (SORRY, AL). THESE GLOVES COME READY TO SERVE WITH A NEW STATE-OF-THE-ART, ABRASION-RESISTANT GRIPPING MATERIAL, RUGGED PADDING IN MULTIPLE STYLES, AND OPTIONAL ENHANCED CUT PROTECTION. IF THAT’S NOT ENOUGH, SELECT PROFLEX® MODELS ARE NOW TOUCHSCREEN-CAPABLE, MEANING YOU CAN TAP, TEXT, AND TYPE WITHOUT SKIPPING A BEAT. MULTI-HAZARD GLOVES FOR THE MULTI-TASKING MASTER. TRY ‘EM AND MAKE YOUR DIGITS’ DAY. THE DIGITAL REVOLUTION STARTS NOW!

THE NEW PROFLEX® TRADES GLOVES WILL BE AVAILABLE SOON – EMAIL TENACIOUSNATION@ERGODYNE.COM TO LEARN MORE.

SEE THE FULL LINEUP OF GLOVES ON PAGE 22

CIRCLE 23 FOR FREE INFO
Beyond arc flash protection

Continued from page 26

Help to ensure worker compliance.

3. Currently, the ASTM F2675-13 test is the standard method for determining the arc ratings of gloves designed for electrical arc flash protection.

Workers operating meters should always be wearing rubber insulated gloves with some sort of protector glove over top. (At the moment, the ANSI/ISEA 105 method does not include arc flash testing.) Also, when you’re looking for an arc-rated glove, ensure that manufacturers are comparing glove options by the same types of standards and principles. This ensures you’ll be able to accurately determine which pair of gloves will better protect your employees. Apples to apples, oranges to oranges, right?

4. Anytime there is a risk of exposure to a shock hazard, workers should always be wearing a rubber insulating glove.

For this reason, workers operating meters should always be wearing rubber insulated gloves with some sort of protector glove over top. Unfortunately, meter malfunctioning is a common cause of electrical burns. Because of this, it’s important that workers using meters wear rubber insulating gloves underneath their protector gloves, since the rubber will block the electricity from passing through to their hands and shocking them. OSHA also recommends that workers wear a protector glove over top of the rubber insulating gloves.

(Bonus tip: If workers require rubber insulating gloves, check with the manufacturer to ensure that the protector gloves will fit over top of the rubber inserts. Otherwise, your workers’ hands will be protected, but the gloves you’ve chosen could affect their job performance – which you definitely don’t want.) As well, whenever a shock hazard is present, it’s always preferable to wear gloves that are voltage-rated.

Currently, the ASTM F2675-13 test is the standard method for determining the arc ratings of gloves designed for electrical arc flash protection.

5. Consider all of the hazards – not just the arc flash-related ones.

Today, certain types of leather gloves are often worn on top of these rubber inserts, but in the future, these gloves might be made from other materials. Although leather gloves provide good protection from arc flashes, they aren’t necessarily the best choice for comfort, cut protection, or chemical protection. It’s important to ensure workers’ hands are not only protected from arc flashes, but from all of the other hazards that they may come across during their workday as well. The best way to do this is to evaluate your workplace and its inherent risks. Otherwise, though you may have taken the time to prevent one type of injury, there’s a good chance that employees could end up suffering from one of a different nature.

Evaluate if workers require other arc-rated PPE, in addition to arc-rated gloves. Depending on the severity of the risk of arc flashes in your workplace, arc-rated sleeves can be worn alongside gloves for additional arc flash protection. The more proper coverage, the better – right?

I hope that these tips will help reduce the risk of arc flashes, and as a result, help you make your work environment a much safer place. For additional information about hand protection options for specific applications, contact a glove expert.

Bill Soellner is the VP Sales U.S.A. at Superior Glove Works Ltd. His career has spanned over 25 years in the safety industry, having worked for four major manufacturers and a major safety specialty industrial distributor. For more information about our hand protection products, call (888) 428-1210 or visit www.superioriglove.com.
If you are an end user of hand and arm protection products, the International Glove Association is inviting you to its annual meeting in Tucson, Arizona, March 20–22, 2016. The 2016 Glove Symposium is an opportunity for safety directors to meet safety industry leaders and learn about changing standards, products, innovations, and how robust hand protection programs can help your bottom line.

There are limited complimentary registrations available. If you are interested in attending this educational seminar, contact the IGA at 814-328-5208 for additional information and to verify your eligibility.

High cost of hand injuries

In the workplace, only the back contributes to more days-away-from-work injuries than the hands. According to the latest data from the U.S. Bureau of Labor Statistics, employers reported 140,460 hand injuries that led to lost workdays in 2011, at an incidence rate of 13.9.

A study published in the May 2012 Journal of Bone and Joint Surgery concluded that hand and wrist injuries in the Netherlands are more expensive than any other injury type, costing about $740 million (U.S.) annually.

The biggest reason for the high price tag, according to the researchers, is lost productivity - not direct health care costs.

Keep pace with innovations

Education sessions at the 2016 Glove Symposium include the topics of economic understanding, what’s new in the glove industry; understanding current, developing and changing glove standards; and a general session on glove education, new technologies and developments.

Work and specialty gloves are stronger, more flexible, more durable and more versatile than ever before, according to Gilbert LeVerne, Jr., director of marketing for glove manufacturer SHOWA in the Americas and Oceania. New polymers, coatings and hybrid fabrics increase glove properties such as functionality, comfort and gripping ability, and lessen hand fatigue.

Better technology creates more waterproof, oil-impermeable and perspiration-preventive gloves to keep hands drier and cleaner.

At the 2016 Glove Symposium you can also learn about high-tech gloves for clean-room applications; more cut-resistant gloves made of Kevlar® coil fiber that don’t sacrifice performance; and more chemical-resistant gloves that can handle grease, oil and extremely abrasive liquids such as acids, caustics and solvents.

Understanding these technological advances is key to selecting gloves for the right applications in your workplace – and also reducing hand injuries and the cost of those injuries.

Ease OSHA compliance

The advanced glove education offered at the symposium will also ease compliance with OSHA’s standard on hand protection, 1910.138. According to the standard, employers shall select and require employees to use appropriate hand protection when employees’ hands are exposed to hazards such as those from skin absorption of harmful substances; severe cuts or lacerations; severe abrasions; punctures; chemical burns; thermal burns; and harmful temperature extremes.

In addition, employers shall base the selection of the appropriate hand protection on an evaluation of the performance characteristics of the hand protection relative to the task(s) to be performed, conditions present, duration of use, and the hazards and potential hazards identified.

The IGA has secured a discounted room rate of $195 + taxes per night at the beautiful Loews Vantana Canyon. Walk out the back doors and step into the natural beauty of the Sonoran desert. For more details, visit www.iga-online.com.
HYFLEX® 11-541: EXCEPTIONAL CUT PROTECTION IN AN ULTRALIGHT WEIGHT GLOVE.

This game-changing product provides ANSI Level 4 cut protection in a comfortable, flexible ultralight weight 18 gauge style for applications where workers have traditionally worn heavier styles that limit their dexterity and breathability.

INTERCEPT™ Technology blends engineered fibers into high performance yarns ensuring workers are protected and comfortable throughout the work day.

CIRCLE 28 FOR FREE INFO

Experience exceptional cut protection, order your free sample at www.ansell.com/intercept
Assessing levels of abrasion, cut, tear & puncture exposure

By ANTHONY DI GIOVANNI

Risk is always present in a work environment. The challenge becomes understanding the risks and potential injuries, and ensuring proper protection is worn. With gloves, General Purpose or General Handling Gloves are often considered the solution because there is a need to be generally protected. But when you think about it, what is “General Protection?”

Engineered yarns allow glove manufacturers to blend various fibers and materials of strength so cut resistance is elevated to higher cut protection levels.

If the glove actually provides “General Protection,” the acceptable and quantifiable standard covers abrasion, cut, tear and puncture. As it stands, if the levels for these four characteristics are comparatively low, then the glove is relegated to the “General Purpose” or “General Handling” category. But when do you need a work glove with generally low protection?

Defining risk

Even when handling boxes, one is exposed to a risk of injury by a cut or abrasion. That said, we have to be careful about how we are defining risk, including not defining it only by the severity of the injury.

For example, when handling boxes (to stay with our example), the selection of General Purpose over Cut Resistant gloves can be the result of underestimating the risk of injury and the associated costs.

Let’s say the most reasonably severe injury one would incur handling boxes is an incision. Seemingly, a simple bandage solves this and the person can be back to work. But the fact is the real costs related to even a simple incision or abrasion wound are quite heavy. Take the cost of administering first aid correctly: a visit to the company nurse, cleaning, sterilizing and bandaging the wound – you’re looking at about $50 to $60 in direct and indirect costs combined.

Indirect costs, such as lost time and production as a result of the worker addressing their wound, should not be overlooked – it often has a greater impact on the company’s bottom line. The earnings to make up that cost are even more significant: $300 at five times earnings. Three or four of these per month, and the costs can mount quickly. But this is an example of a lower level hand injury. Per the Bureau of Labor Statistics (BLS), the average hand injury claim now exceeds $6,000. Unfortunately, when injuries happen, we can’t dictate how severe they will be, and the impacts go beyond economics.

The goal is prevention. Only gloves with cut protection can help avoid these potential injuries.

A common selection

Leather gloves have traditionally been thought of as a solution and are still widely used today. Other than the known fact that they are bulky and lack tactile sensitivity, they also offer a false sense of protection. That’s not to say they don’t protect at all – they do well to protect against abrasions, but they are comparatively susceptible to cuts. Leather is treated animal skin and sharp objects can slice it easily, depending on the thickness. In addition to lacking dexterity, leather gloves do not offer the grip of coated gloves. This lack of grip can lead to an increased risk for cut injuries.

Remember: cut injuries generally don’t occur from hands pressing against something. It’s usually an object moving across the hand that leads to a cut or laceration.

Cut injuries generally don’t occur from hands pressing against something. It’s usually an object moving across the hand that leads to a cut or laceration.

For example, when handling boxes (to stay with our example), the selection of General Purpose over Cut Resistant gloves can be the result of underestimating the risk of injury and the associated costs. The goal is prevention. Only gloves with cut protection can help avoid these potential injuries.

A common selection

Leather gloves have traditionally been thought of as a solution and are still widely used today. Other than the known fact that they are bulky and lack tactile sensitivity, they also offer a false sense of protection. That’s not to say they don’t protect at all – they do well to protect against abrasions, but they are comparatively susceptible to cuts. Leather is treated animal skin and sharp objects can slice it easily, depending on the thickness. In addition to lacking dexterity, leather gloves do not offer the grip of coated gloves. This lack of grip can lead to an increased risk for cut injuries.

Remember: cut injuries generally don’t occur from hands pressing against something. It’s usually an object moving across the hand that leads to a cut or laceration.

An obvious component

Gloves that are dexterous, coated for an enhanced grip, and made with materials that are inherently cut resistant are crucial. While cut resistance is an obvious component of elevated protection, the other two aspects should not be overlooked. A glove that lacks dexterity may be removed to perform certain tasks, which removes the worker’s protection. An enhanced grip makes it less likely something will slip out of or through the worker’s hands, which could cause a laceration. There are multiple variables to take into account for each job or task to ensure the overall protection meets the needs of the workers, as well as the demands of the work to be performed.

Lowering the price point

But aren’t these Cut Resistant gloves much more expensive than General Purpose gloves? Until most recently that was the case. However, advancements in engineered yarn technology are shifting this paradigm. Engineered yarns allow glove manufacturers to blend various fibers and materials of strength so cut resistance is elevated to higher cut protection levels. Affordable cut protection now can be provided for everyone, in every market. Construction workers are most typically seen wearing those fabric/leather split palm gloves. Switching to coated seamless knits with engineered yarns enhance protection and allow them to more securely hold power tools as they handle sharp fasteners and sheet metal. Warehouse workers often wearing the economical General Purpose gloves can now feel more secure, even while handling those dangerous box cutters or razor sharp tape dispenser blades.

What’s important is that we change our perception of “General Protection” and how it’s achieved. Advances in technology will continue to provide enhanced performance and cost-efficiency solutions to this persistent issue.

Anthony Di Giovanni is the Vice President of Global Marketing for Protective Industrial Products (PIP). He has more than 25 years of experience in Industrial Markets covering a range of Electrical, Chemical and Fire Resistant clothing. He joined PIP in 2013.
YOUR HAND IS THE MOST IMPORTANT TOOL YOU HAVE

"According to the Bureau of Labor Statistics (U.S. Department of Labor) in 2014, there were 234,750 injuries in the work place related to the hand, wrist and arm. This resulted in an average of 10 days away from work per employee."

INTRODUCING THE MOST VERSATILE RANGE OF HAND AND ARM PROTECTION IN AMERICA

ARMOR GUYS PROTECTED

www.armorguys.com

1(310) 504-1380 | contact@armorguys.com | 10990 Wilshire Blvd. Suite 250 Los Angeles CA 90024
 HOW CLEAN ARE YOUR INDUSTRIAL WORK GLOVES?

It may be something that you’ve never thought of however we at ATG® believe that it is the right for all glove wearers to know that the gloves they wear are “dermatologically safe” and the science and research behind them is robust.

In our on-going discussions with end-users it’s commonly thought that taking a fresh glove from the packet means that the gloves are clean. Don’t take this for granted as a lot of the gloves today contain residual chemicals left in the glove from the production process.

Cleanliness issue:
The problem is quite widespread - so say studies by the Institute of Occupational Medicine (BGFA) at the Ruhr University in Bochum (Germany), and the Danish Technological Institute for the Environment. The BGFA found that 45% of the leather gloves tested positive to Chromium (VI) impurities, despite the fact that most modern tanning agents are free from large amounts of Chromium (VI).

Likewise, the Danish Technological Institute for the Environment found 35% of the leather gloves tested contained Chromium (VI) in levels above the acceptable parts per million (PPM) guides for harmful ingredients. If you stop using leather gloves and only use synthetic gloves will everything be OK?

The simple and direct answer to that is NO. You always need to check any glove you use, even if it is from one of the large, well known manufacturers as synthetic gloves could also contain harmful ingredients. So what should you look for?

Suitable gloves:
There are three important elements to be considered when choosing suitable gloves relating to the way they are produced, how clean they are when they come out of the packet and the dermatological aspect for continual use.

Production process:
REACH is a regulation of the European Union, adopted to improve the protection of human health and the environment from the risks that can be posed by chemicals. Ask your current supplier about the companies obligations towards this regulation to see what they have done and if you currently use ATG® gloves rest assured there are no Substances of Very High Concern (SVHC) in any of our gloves.

Out of the packet cleanliness:
Oeko-Tex® is the international testing and certification system for textiles, limiting the use of certain chemicals. It has become established as a safety standard throughout the textile manufacturing chain and enables checks to be made for any harmful substances at each stage in the production process. This Oeko-Tex® label is a good indicator of product cleanliness as it comes out of the packet.

Dermatological aspect:
As professional work gloves are going to rest against the skin for long periods of time on a daily basis, the dermatological aspect, we at ATG® believe, has to be taken into consideration.

It’s essential to check if the gloves are dermatologically accredited - and don’t fall into the trap of thinking that the more expensive they are, or the larger the company they come from, the cleaner they will be.

Time for change
We at ATG® think so, which is why we’ve developed the HandCare™ program that’s integrated into every ATG® glove. All our gloves are dermatologically accredited by the Skin Health Alliance. More information can be found at:

www.atg-glovesolutions.com and/or
www.skinhealthalliance.org/approved-products/

Find out more at: www.atg-glovesolutions.com
PEOPLE HAVE BEEN ASKING US TO MAKE A CUT RESISTANT MAXIFLEX® THAT’S STILL SUPER THIN, FLEXIBLE, DEXTEROUS AND COMFORTABLE.

So we did. Here it is.

Our new MaxiFlex® Cut™ blends outstanding comfort with remarkable durability and cut-resistance making it exceptional value for money.

360° breathability through the integration of our AirTech™ technology platform in the glove coating to keep your hands cool and comfortable.

The reinforcement between the thumb and forefinger, improves cut resistance and extends glove life in an inherently weak area.

An ultra thin coating affording you the dexterity to get the job done.

Guaranteed skin friendly.
ENHANCED PROTECTION

High-visibility materials offer extra protection

By CORY HOUSTON

High-visibility clothing is intended to clearly distinguish its wearer from his or her environment (and we’re not talking about that ruffled, powder blue prom tux). Your basic high-visibility garment most often includes two components: a bright background base and retroreflective accents. On some garments, especially gloves, you’ll find a third component—a performance material offering enhanced protection (referred to as ANSI/ISEA 107-2010 in industry-speak).

Back in the 1500s, a peculiar, yet naturally occurring blue opalescence caught the eye of Niccolás Monardes, and a few hundred years later in 1852, George Gabriel Stokes noted the ability of fluor spar and uranium glass to shift UV light to a higher wavelength of blue light. We now know this phenomenon as fluorescence.

We don’t condone wearing a safety vest made of uranium, but the idea of a bright, retroreflective garment constructed of fluorescent material is a great idea for anyone who really needs to be seen.

1964

Experimental use of high-visibility clothing began on the rail system of the Scottish Region. Bright “Fluorescent Orange” jackets, known as “fire-flies,” were issued to rail workers. The first version of Hi-Viz (HV) clothing used then was simple, yet effective—a yellow or orange poncho-type garment was visible for half a mile in normal weather conditions. And after its proven visual success, “Safety or Blaze Orange,” became the shade of orange required by United States law to be on the tips of barrels of replica guns such as airsoft and cap guns. Safety first.

2009

An Australian study found that fluorescent vests were not a significant improvement on black clothing at night. So when it’s pitch black outside, a bright orange vest alone isn’t the best choice. Then what is best? The International High Visibility Clothing Association (IHVCA) did a bit of research and came up with the following conclusion: use retro-reflective safety garments at night. Retroreflective is a fancy word for anything that bounces a light source back to itself (reflective, on the other hand, means that something simply reflects light—so anything you can see is technically reflective; we’ll stop the physics lesson here). The “silver”, retroreflective accents found on just about every pair of running shoes are perfect examples of materials made to reflect light.

Standards

Worker safety is of the utmost importance, and accordingly, there are established standards for apparel and personal protective equipment (PPE). The ANSI Standard requirements include color, retroreflection, and minimum areas, as well as the recommended configurations of the materials and design. The standard or approved amount of background and retroreflective material has evolved over time and is split into 3 Classes. Each class is required to illustrate a defined amount of visibility. Class 1 vests and Class 2 vests and garments must now have retroreflective material in the highly visible shoulder area. The objective of this change is to provide greater visibility when a worker is bending over, or at angles that could be potentially missed on a garment without “vertical” reflective material over the shoulders. Class 3 standards require the user to wear an upper and lower garment.

European Standard EN 471:2003 defines a specific amount and placement of reflective “banding” and the associated Class standard as pertaining to the combination of apparel worn.

As with several other PPE standards that ISEA developed, ANSI/ISEA 107-2004 is being publicized and distributed to federal, state, and local governments. OSHA encourages the development of voluntary industry consensus standards and is an advocate for their use.

Hand protection

Interestingly, your hands are not required to be covered in retroreflectivity or be highly visible, but many EHS managers are adopting high-visibility PPE to further protect workers in hazardous environments.

For example, hand and finger injuries in the oil and gas industry are second to falls and back injuries. Data from IADC’s 2009 Incident Statistics Program (ISP) indicate that 34 percent of recordable incidents and 20 percent of lost-time incidents fall into this category.

So turn the clock back to 1989. Throw on your day-glow yellow tank top, a pair of neon orange SideOut volleyball shorts, your retroreflective gloves and be the safest dude on the jobsite. Oh yeah man, we see you, and your hands.

Cory Houston works in the marketing department at Mechanix Wear, Inc. He can be reached at chouston@mechanix.com.
About eight years ago, thermoplastic rubber (also known as TPR) revolutionized the hand safety industry. For the first time, this sturdy yet lightweight and flexible material was adhered to gloves to protect the back of the hand from impact. It was a groundbreaking step forward in safety.

We’ve come a long way since then, with continued innovations and improvements in the way that gloves protect hands from impact hazards, pinch points and crush zones. In this article, we will discuss some of the recent trends in back-of-hand protection, and the impact they are having in the marketplace.

Heat pressing enhances comfort

Originally, TPR was added to cut-and-sew gloves and sold primarily to the oil and gas industry. The TPRs are stitched on using high-calibration machines and skilled workers to make sure the thread doesn’t go through the shell of the glove. More recently, TPR was added to seamless dipped/coated gloves.

One advancement in the past few years has been the use of sonic welding or heat pressing to attach TPR to dipped/coated gloves. The benefit of sonic welding and heat pressing is that there is no stitching to cause irritation; workers can comfortably wear the same glove all day long. For workers in many industries, such as mining, where workers don’t swap out gloves frequently, this improvement in comfort is a benefit.

Sonic welding uses high-frequency acoustic vibrations to join dissimilar materials without stitching or other adhesives. The high-frequency sound waves vibrate the seams of the plastic and cause friction and high, focused heat. This heat adheres the properties of the TPR onto the shell of the glove. The process is clean and allows for a strong, nearly unbreakable bond. Because sonic welding requires expensive equipment and a highly skilled workforce, not all manufacturers employ it. Heat pressing is a similar technology where heat-activated adhesives are used to fuse the TPR onto the glove without stitching.

Available for more industries

Today, we see TPRs being added to other materials as well, including leather, Lycra/spandex, and even engineered yarns like HPPE. In most cases, the ability to adhere the TPR to different materials is a process of trial and error to figure out the most effective adhesive solutions.

The benefit of adding TPR to other types of gloves is that back-of-hand protection is available for all sorts of applications. No longer is TPR relegated to heavy duty work on rigs. Gloves with back-of-hand protection are becoming increasingly common in the electrical, automotive and construction industries. Even multi-purpose gloves are available with TPR today. Workers in all kinds of industries are faced with being struck by a stationary or falling object, being caught in/under an object, or being bumped in tight confined spaces – now comfortable back-of-hand protection is contributing to enhanced compli-

continued on the next page
Back-of-hand protection

continued from the previous page

TPR is getting thicker, yet more supple

TPR used to come in one size fits all. They were all about 4-5 mm and were all considered to be heavy-duty. Today, we can find TPRs in various thicknesses, from a low-profile TPR that is 4 mm to a high-profile TPR that is 7 mm. The thicker the TPR, the greater the protection from impact, within limits.

Hand and finger injuries are the second most common workplace injury after back injuries.

You might think that thicker TPRs would be less flexible, but that is not necessarily so. Some manufacturers have developed proprietary formulations to make them supplier and softer, while not diminishing the level of protection. The noticeable difference is weight. Thicker TPR is heavier. You might not even notice the thinner TPRs on your glove. The shape of the TPRs, too, can make a difference in the bendability and flexibility of the glove. You can now select the level of protection and flexibility that is right for the job, and the budget.

Extending coverage for greater protection

Originally, TPR was designed to provide knuckle padding and some finger padding. Today, TPRs are created that provide full coverage for the back of the hand. There are TPRs on the back of hand to protect the metacarpals, as well as TPRs going all the way down the fingertips. Fingertips are especially at risk for pinching; this extended coverage promises a great step forward in protection. It also allows you to select the appropriate coverage needed.

Using air-infused foam for chemical gloves

One new innovation in back-of-hand protection is a new air-infused foam technology employed in chemical gloves. In this application, the foam is injected directly into the glove and becomes an integral part of the glove. The impact protection lasts the life of the glove, even in the harshest chemical and biohazard environments. This is one of the first non-TPR technologies to be introduced to the market for back-of-hand protection in quite a while.

A win-win: Comfort leads to compliance culture

The Journal of Occupational and Environment Hygiene reported 80 percent of workers who experienced hand injuries weren’t wearing gloves, and that wearing gloves lowers the risk of injury by 60 percent. Companies are learning when gloves are more comfortable and effective, it is easier to improve the safety culture and compliance.

For instance, one major oil company established a zero-hand-injuries initiative that reduced hand injuries 84 percent between 2008 and 2012. An aerospace company also established a similar program with an initial goal to reduce hand injuries by 75 percent by 2018 through the use of the right glove for the job.

New advances and gloves are making back-of-hand protection benefits available in more industries for more workers than ever, with greater flexibility in the type of protection offered — and at lower price points. With these changes and others, establishing lofty “no injury” safety goals is a reality in the present, not only science fiction.

David Murphy is a Product Development Manager at West Chester Protective Gear. Visit westchestergear.com.
By ANDY OLSON

In 2014, 137,440 hand injuries resulted in an average of five days of missed work. While that might not sound like much, it means a project was at least one worker short for an entire workweek. Another 10,710 workers suffered bruises and hand contusions in 2014, missing four days of work on average. These absences likely required other workers to step up and work longer hours so the projects finished on time. Fortunately, technical work gloves – and the workplace policies requiring their use – are becoming more popular across the country resulting in better protected and more productive workers.

Skin is no match...

A common, traditional work glove is a one-size-fits-all leather “driver.” But this type is often bulky and doesn’t provide sufficient dexterity for precise tasks that involve using tools, manipulating small parts like screws and nails, or pushing small buttons on a piece of equipment or a touch screen.

Stats show that simply wearing gloves of any type can prevent many hand and finger injuries. Thick as skin can be, it’s no match for certain workplace hazards. At the very least, work gloves can protect against minor site hazards like splinters and other protrusions that cause lacerations, as well as rough surfaces that leave abrasions. At the most, they can prevent crushing blows, deep cuts, and career-ending conditions like HAVs.

But workers in these extreme conditions aren’t typically the ones who need convincing. Workers who find their tasks run-of-the-mill may not see the need to wear gloves. Even in these common scenarios, however, donning a glove makes a distinct difference.

• Handling Materials: Whenever a worker moves materials on a jobsite, they risk their hands being cut on the sharp edges of metals, glass, or plastic shards, and from splinters on broken/damaged materials.

• Tool Use: Using gloves with tools results in a better grip on many tools with wooden or metal handles.

• Adjacent Work: When side-by-side work poses a potential flying object hazard, the dorsal (i.e., top) part of the hand should be covered to protect it from cuts, abrasions, burns, and more.

Competing hazards

Everyday work gloves should be flexible and allow workers to feel the materials, tools, and equipment in use. Gloves shouldn’t negatively impact precise tasks that require pinch grip. To enhance hand and finger dexterity, it is important that workers wear a glove that fits securely and utilizes materials that are both lightweight and durable.

Many job sites are becoming more technologically-advanced with paperless documentation, daily progress photos, and instant communication. A glove that can stay on while a worker taps and swipes on an electronic device saves precious seconds and makes for more efficient work. It also prevents the worker from having to remove the glove to operate the device, which can leave them exposed both then and if he or she neglects to put them back on.

Also something to note: Work sites are becoming increasingly hot in both temperature and the amount of heat generated by worker exertion. Instead of working with bare (and sweaty) hands, workers should wear gloves made of durable yet breathable materials. This will cut down on workers removing their gloves because of sweat and yet again, leaving them exposed to injury.

The good news: Providing workers with well-fitting gloves is a win-win. It’s a way to help ensure that they are better protected from common hazards while also helping with productivity.

Go the distance in your career this year by earning your certification. ASSE Certification Preparation Workshops are the best choice as you begin your exam preparation. Our industry respected and experienced instructors, Langlois, Weigand & Associates, Inc., are experts in the exam and will walk you through the essentials of what you need to know using practical examples and practice problems.

Our workshops provide the best opportunity to gain the knowledge and confidence to pass your exam the first time.

<table>
<thead>
<tr>
<th>Date</th>
<th>Workshop</th>
<th>Location</th>
<th>Early Cut Off</th>
<th>Regular Cut Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 6</td>
<td>Math Review</td>
<td>Baltimore, MD</td>
<td>2/5/16</td>
<td>2/19/16</td>
</tr>
<tr>
<td>March 7-9</td>
<td>ASP Workshop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>March 10-12</td>
<td>CSP Workshop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>March 13</td>
<td>Math Review</td>
<td>Oklahoma City, OK</td>
<td>2/12/16</td>
<td>2/26/16</td>
</tr>
<tr>
<td>March 14-16</td>
<td>ASP Workshop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>March 17-19</td>
<td>CSP Workshop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>March 21-23</td>
<td>OHST</td>
<td>Des Plaines, IL</td>
<td>2/19/16</td>
<td>3/4/16</td>
</tr>
<tr>
<td>April 10</td>
<td>Math Review</td>
<td>Cambridge, MA</td>
<td>3/11/16</td>
<td>3/25/16</td>
</tr>
<tr>
<td>April 11-13</td>
<td>ASP Workshop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April 14-16</td>
<td>CSP Workshop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 15</td>
<td>Math Review</td>
<td>Sacramento, CA</td>
<td>4/15/16</td>
<td>4/29/16</td>
</tr>
<tr>
<td>May 16-18</td>
<td>ASP Workshop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 19-21</td>
<td>CSP Workshop</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We are so confident in our workshops that if you do not pass, you can retake the same workshop for FREE! Visit our website for details on our guarantee.
The Next Generation of Barracuda Gloves Adds Impact Protection

Now, the best selling, most reliable cut glove comes with back-of-hand impact protection.

Built for comfort and fit. The TPR is sonic heat pressed to eliminate chaffing and irritation.

ANSI cut 2, EN388 4442

The right glove for the job.

WESTCHESTER
PROTECTIVE GEAR
WESTCHESTERGEAR.COM
800.647.1900

Andy Olson has been an Ergodyne employee for seven years and is responsible for the protection product pillar. Andy serves as the company’s ISEA representative on the hi-vis apparel, hand protection, and eye protection standard committees. He has authored numerous articles that have been published in safety trades on topics ranging from hand protection and worker visibility, to protection for worker-generated head injuries and eye wear compliance. He also trains distributors and end users nationally on the ANSI/ISEA 107 Hi-visibility standard and other relevant safety topics.

*Most recent statistics available

Resources

One size doesn’t fit all

fitting, technical work gloves, although an investment, should result in more regular compliance and as a result, fewer injuries. When workers don’t like the gloves they are given, they simply won’t wear them. And that’s not good for anyone.

Choosing for cut protection

Work done by glaziers and sheet metal workers, or any other specialty tasks, may require cut protection. In those instances, workers should wear daily work gloves that have met performance standards for cut protection. ANSI/ISEA 105 is the standard primarily used in North America. Another standard is EN 388, which is used in Europe, South America, and Mexico. The EN standard is also widely recognized in the U.S. and Canada.

Cut resistance is a key performance area measured by both the ANSI and EN standards. Though they use different test methods, both are designed to provide a baseline indication of the level of cut and slash protection provided by a glove. Consulting any glove’s manufacturer to understand both the type of testing that has been done and the level of protection it provides is always best practice, as is conducting a hazard assessment to determine the level of cut protection needed for the application where gloves will be worn.

Both the ANSI/ISEA 105 and EN 388 standards include other mechanical risk tests to measure a glove’s resistance to abrasions, punctures, and tears. A certified lab must conduct the tests for a glove to have an EN 388 mark. This mark includes the corresponding numerical Performance Levels for abrasion, blade cut, tear, and puncture to easily identify how the glove fared in the testing process. These EN Performance Levels are not necessarily interchangeable with ANSI/ISEA 105 Performance Levels; however you can always count on the number 1 signifying gloves appropriate for nuisance injuries like abrasions and minor cuts while higher numbers signify a higher level of protection. The ANSI/ISEA 105 standard includes a Performance Level of 0, which means minimal or no protection at all.

Depending on your location or your favorite glove manufacturer, both the ANSI/ISEA 105 and EN 388 Performance Levels may be displayed on a pair of gloves. Since performance identification on gloves is not required in North America, buyers may see only the EN 388 Performance Levels displayed, depending on the glove manufacturer.

The future

More and more manufacturers are stepping up and creating everyday work gloves with the worker in mind. Even the simplest of tasks should have a glove that meets the needs of the hazard and worker. Whether it’s cut protection, breathability, touch screen capabilities, or dexterity, safety professionals and project supervisors now have a wide array of options to not only keep their workers’ hands safe but get the multiple aspects of their job done as well. Because ultimately, providing a more comfortable and job-specific glove will keep gloves where they should be – on the worker.

Resources

*Most recent statistics available
Innovations — development of new and improved materials and advancements in manufacturing processes — have made work and specialty gloves stronger, more flexible, more durable and more versatile than ever before. They more effectively protect hands against harsh, extreme-temperature, and high-risk work environments.

For the first time, biodegradable nitrile gloves, made of organic materials, break down more readily in landfills. New polymers, coatings and hybrid fabrics increase functionality, comfort and gripping ability, and lessened hand fatigue. Better technology is creating more waterproof, oil-impermeable and perspiration-preventive gloves to keep hands drier and cleaner; high-tech gloves for clean-room applications; more cut-resistant gloves made of Kevlar® coil fiber that don’t sacrifice performance; and more chemical-resistant gloves that handle grease, oil and extremely abrasive liquids such as acids, caustics and solvents.

Many manufacturers invest heavily in research and development to create custom-engineered gloves for very specific uses and jobs — such as contractors, carpenters, HVAC technicians, welders and electric utility workers. And they provide protection from a myriad of hazards, such as arc flash. Innovations allow workers to perform their tasks better, more safely, with more dexterity, and with gloves that last longer.

Hybrids and sustainability come to the fore

Hybrid fabrics, comprised of cutting-edge yarns and other fabrics, deliver lighter-weight gloves to protect workers against multiple dangers — from chemical substances to lacerations, cuts and punctures. Innovations includes thermal plastics and resins for pinch and impact protection and greater chemical and cut resistance, and smart fibers to detect certain chemicals.

Technology improvements make gloves feel better on the hands and are thinner and more touch-sensitive. Seamless, ergonomically-sound liners make gloves fit more snugly and grasp objects more evenly; have non-slip grips for better tactility when exposed to mud and oil; and greatly reduce hand fatigue in oily, chemically pervasive conditions. New gloves also eliminate irritation or allergic reactions associated with latex, nitrile or neoprene polymers.

Sustainability is a growing consideration, too. Some manufacturers use extended-life materials that reduce carbon emissions from manufacturing and delivery. Use of glove liners and coatings made from virgin raw materials cuts down on chemicals. Environmentally friendly bamboo fibers — which, unlike synthetic fibers aren't petroleum-based — have made their way into the gloves’ shell. Demand is growing for post-consumer recyclate (PCR), which consumes less energy and natural resources, and for biopolymer fibers, made of starch, cellulose, and polylactic acid and that are found in disposable products.

Ultimately, the idea is to create one glove that can unfailingly handle as many critical tasks as possible.

Distinguish authentic innovation from imitation

Truly groundbreaking developments in the glove industry emerge from companies that track and anticipate industry needs, and reflect those changes with innovative R&D. As production and delivery processes become more sophisticated in segments such as oil...
and gas extraction and transport, chemical refining, mining, and medical laboratory processing and testing, glove manufacturers need to maximize performance and protection properties for designated operations. Innovative glove manufacturers recognize this is a constantly evolving imperative and provide the necessary R&D to keep pace with it.

Gilbert LeVerne, Jr., director of marketing for glove manufacturer SHOWA in the Americas and Oceania, describes this working definition of the process:

“Authentic innovation is creating a product that is unique, potentially patentable, and offers more protection and additional tactile sensitivity, while maximizing comfort for the user. It may also be founded in a chemistry that allows normally non-biodegradable gloves to be biodegradable in certain conditions, such as an active landfill.

“Copycats and knock-offs truly don’t understand this definition.”

Innovation comes from manufacturers whose multiple patents are the foundation for their products. A culture of creative and patient developmental design exists subject to constant challenge and testing under real-world conditions.

Development of the world’s first biodegradable, disposable nitrile glove came from a corporate commitment to environmental preservation and social responsibility, and rigorous intellectual property standards. Consultations with glove users identified the need to address allergic sensitivity to latex rubber. Safety always is top-of-mind with innovative manufacturers. The National Safety Council reports that slices, cuts and lacerations account for almost 30 percent of time and productivity lost to work-related incidents, and 80 percent of those incidents involve hands – the most frequently injured body part in jobsite accidents, according to the U.S. Bureau of Labor Statistics.

Some innovators provide customized safety solutions that optimize customers’ cost performance. You start with a comprehensive hazard assessment, identify risks in the workplace, and establish a benchmark to measure effectiveness over time. Service experts provide ongoing assistance to ensure the customer gets the most from the investment long term.

Companies that make personal protective equipment, including gloves, are taking a more holistic approach to improve sustainability. Every step of their product’s journey is improved, from raw materials and production, to transportation and logistics, customer usage and disposal. Imitators may continue to invest indefinitely in fossil materials such as polyester, polyamide and polyethylene. Innovators will use more natural fibers such as hemp and linen. They’ll also look to 100-percent post-consumer waste and recycled materials for glove packaging purposes.

Look for “additional” investments in cut, puncture and impact-resistant gloves and products for the oil and gas industry “despite the downturn in the energy sector,” according to LeVerne. Redundant product lines could be thinned out to make way for a new generation of innovations.

Authentic glove innovators, in the end, are unfailingly sensitive to emerging and shifting functional, convenience and safety challenges that gloves must meet. Their mission, as one industry leader puts it: “to give ordinary hands extraordinary abilities.”

Gilbert LeVerne, Jr. is director of marketing for glove manufacturer SHOWA in the Americas and Oceania. Todd Klueger is Product Manager for SHOWA.

The Safer Choice for personnel de-dusting & clean down operations...

The JetBlack™ is an easy-to-use alternative to compressed air that offers employer’s peace of mind, and users a completely safe solution for de-dusting and clean down operations.

Simple, Fast, Safe and Effective

Air Control Industries
Global Air Movement Specialist Since 1969
Tel: 207-445-2518 • Windsor, Maine

Purchase online at www.jetblack-air.com
Email: inquiries@aircontrolindustries.com

*Air Control Industries Inc is now offering Free Safety Webinars http://aci.clickwebinar.com/jetblack-intro
ARM UP!
THE NEW TAEKI5® SAFETY SLEEVES

Performance and functionality speak for themselves. The advanced properties of the Taeki5® material are allowing safety professionals to address the toughest requirements for Hand Arm Body Protection and ensure a safer working environment.

innovation@taeki5.net
Cut protection
APOLLO’s Tool Grabber Cut Protect 4 glove features Lightning Touch Technology™ and allows workers to interface with touch screens, tablets and phones. It provides superior grip in all work conditions. ANSI cut 4, ANSI puncture 5 and ANSI abrasion 6 rated. APOLLO PERFORMANCE GLOVES is a worldwide manufacturer of performance work gloves for the Industrial, Safety and Construction markets. Contact us for a free catalog. www.apglves.com, 800-291-3763 Circle 240

Hand protection
After manufacturing for 23 years, Armor Guys is proud to bring to the U.S. market the Hipora waterproof liner, and touchscreen technology so you can stay one step ahead of the cold. Hipora Waterproof liner, and touchscreen technology so you can stay one step ahead of the cold. The Winter Impact is equipped with C100 3M Thinsulate Insulation, a touchscreen capability. The Winter Impact pro glove features Lightning Touch Technology™ and allows workers to interface with touch screens, tablets and phones. It provides superior grip in all work conditions. ANSI cut 4, ANSI puncture 5 and ANSI abrasion 6 rated. APOLLO PERFORMANCE GLOVES is a worldwide manufacturer of performance work gloves for the Industrial, Safety and Construction markets. Contact us for a free catalog. www.armorguys.com, 310-504-1382 Circle 241

Cut-resistant yarn
Banom’s new cut-resistant yarn, Dynamax® HD, is an ultra-high, tensile-strength continuous filament yarn that protects against sheet metal and machined metal edges (featured here in the MetalMaster™ Glove). Banom, www.banom.com Circle 242

Two-layer coated glove
Cordova Safety Products is pleased to introduce Tandem™ (39405-XL) and Tandem Plus™ Coated Gloves. Both models feature 15-Gauge machine knit shells and two-layer coatings. The Tandem™ includes a red polyester/spandex shell with a two-layer sandy latex coating. The Tandem Plus™ (39405-XL) is constructed similarly, but includes a green polyester/spandex shell and two-layer sandy nitrile coating. Both models offer high degrees of dexterity, along with knuckle protection and splash resistance. Cordova Safety Products, www.cordovac.com Circle 243

Touchscreen capability
One of two touchscreen-capable models in Ergodyne’s new ProFlex® Trade Series, the 710TX heavy-duty utility glove features touchscreen thumb and fingertip zones with a padded palm reinforced with abrasion-resistant Tena-grip™ technology. Ideal for your jobsite Jack of all Trades. Email tenaciousconnection@ergodyne.com for more info on the upcoming glove launch. Ergodyne, www.ergodyne.com Circle 244

Breakaway glove clip
The Glove Guard® clip, the original safety breakaway glove clip, has a proven record of reducing hand injuries and glove loss because gloves will be used if available. Clips can be customized with a company logo, contact information or safety slogan in up to two colors and both sides. Glove Guard, www.gloveguard.com Circle 245

Anti-vibration glove
IMPACO BLACKMAXX PRO gloves are made with cotton seamless knit material with Chloroprene palm coating. Lightweight and flexible, can be worn as liner for specialty purposes. Utilizes encapsulated air to cushion and dampen vibration, giving the user optimum dexterity. Designed for use with vibrating tools such as jackhammers, sanders, drills and more. ANSI /ISO 10819 certified. IMPACO, www.impaco.ca, 888-232-0031 Circle 246

Winter impact pro glove
The Winter Impact is equipped with C100 3M Thinsulate Insulation, a Hipora waterproof liner, and touchscreen technology so you can stay one step ahead of the cold. Mechanix, www.mechanix.com Circle 247

Dual latex technology
Built to excel in the elements year-round, SHOWA 306 dual latex technology offers everyday protection and performance for a versatile range of outdoor pursuits. The SHOWA 306 features an innovative coating that defies liquids while enhancing breathability. Ergonomic design, exceptional grip, and a knit liner ensure a comfortable fit. SHOWA, www.showagroup.com Circle 255

Comfortable cut resistance
PolyKor™ featuringPIP’s proprietary fibers and engineered yarns produce comfortable cut resistant gloves that surpass everyday performance standards. Our PolyKor™ line up of safety gloves offers cut protection as high as EN 5 / ANSI 4 without compromising dexterity and tactile sensitivity. PolyKor™ delivers the performance and protection levels Safety Directors require at an exceptional value. PIP, www.pipusa.com Circle 248

Examination glove
NITECH® examination gloves are manufactured from a patented blend of premium synthetic materials that facilitates donning in wet or humid conditions. 100% powder & latex free, offering a level of protection in between vinyl and nitrile at most competitive price. Call for your free samples, switch to NITECH® and start saving NITECH, www.ronco.ca Circle 249

Cowhide driver
New, grain cowhide driver from Southern Glove, with keystone thumb, shired elastic, and high visibility orange finger tips and imprint on the back of the glove “WATCH YOUR HANDS.” Style # LDKWYH. Southern Glove, www.southernglove.com Circle 250

High-performance glove
Summit Glove’s high-performance Get-A-Grip gloves are beyond compare. Featuring a super tough 100% nitrile compound and raised diamond pattern. These gloves give excellent abrasion resistance and protection in most applications. Your hands are your livelihood - protect them with the best in the industry. Summit Glove, www.summitglove.com Circle 251

Cut-resistant glove
West Chester Protective Gear is proud to offer the Taeki5® Model # 730TGU. This cut-resistant glove is engineered to give you the highest standard of EN & ANSI rated cut protection, superior dexterity, and tactile sensitivity. It is ideal in automotive work, glass handling, sheet metal work, and industrial and agricultural cutting applications. It is rated ANSI Cut 3 and the EN388 rating is 452. With cuts and punctures accounting for over 12% of workplace injuries, it makes sense to give your employees the best selection in workplace protection. Do you Taeki? Now you do! Taeki5, http://www.westchesterprotects.com/product/730tgu Circle 252

Impact protection
Air Krush™ is the first of its kind to provide impact resistance through an innovative air-infused foam technology. The foam is injected directly into the glove so it lasts the life of the glove. This is a serious chemical protection glove with heavy-duty impact protection. West Chester Protective Gear, www.westchesterprotects.com/product/HVO1015, 800-647-1900 Circle 253

Kevlar fiber glove
Introducing a new line of ATR® gloves featuring Kevlar® fibers. For years you’ve known the ATR® brand delivers high levels of protection, comfort and price value. Now we’ve added Kevlar® fibers, taking cut resistance to a new level. Steel free and ANSI Level 5 cut rated, the MATAKV/BK40 is ideal for today’s demanding automotive applications, from welding to stamping to inspection. Our own: Made in the USA by Worldwide Protective Products. www.wpproductive.com Circle 254