This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies
By closing this message or continuing to use our site, you agree to our cookie policy. Learn More
This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
ISHN logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
ISHN logo
  • Home
  • Magazine
    • Current Issue
    • Digital Editions
    • Archives
    • Buyer's Guide
    • Subscribe
  • Topics
    • Environment
    • Environmental Health and Safety
    • Government Regulations
    • Health
    • Industrial Hygiene
    • Occupational Safety
    • PPE
    • Product Case Studies
    • Psychology
    • Safety Culture
    • Training
    • Transportation Safety
    • More Topics
  • Construction
  • Oil & Gas
  • Columns
    • Editorial Comments
    • Best Practices
    • Positive Cultures
    • Training Strategies
    • Closing Time
    • FR Protection
    • Thought Leadership
  • Products
  • Conventions
    • Convention Companion
  • Multimedia
    • eBooks
    • Infographics
    • Photo Galleries
    • ISHN Podcasts
    • Your Digital Mentor Podcasts
    • Videos
    • Webinars
    • White Papers
    • ISHN YouTube Videos
  • More
    • Awards
      • 2020 Readers' Choice Awards- Submit Products
    • eNewsletters
    • Events
    • ISHN Store
    • Product Case Studies
    • Product Innovations
    • Showrooms
    • Vendor News
  • Advertise
    • Contact
Home » New technology helps caculate pollution entering respiratory system
HealthToday's News

New technology helps caculate pollution entering respiratory system

airpollution-422px.jpg
April 19, 2012
KEYWORDS exposure / health / monitors / research
Reprints

air pollutionsResearchers say a newly developed technology will help scientists better understand the relationship between environmental contaminants in the air and potential adverse health effects.

The approach by RTI International -- an independent, nonprofit research organization -- uses personal exposure monitors with built-in acceleration sensors to determine individual activity levels while predicting how fast adults, and potentially children, breathe pollutants in their environment. That enables scientists to calculate potential dosage – how much pollutant enters the respiratory system – in real time.

"While scientists have been measuring exposure levels in the air for decades, knowing the pollutant concentration doesn't necessary indicate how much is taken into the body," said Charles Rodes, Ph.D., an RTI senior fellow and lead author of the study. "By knowing how fast someone is breathing, we can now estimate how much of a pollutant is actually making it into the respiratory system."

The initial results from the pilot program were recently accepted for publication in the journal Atmospheric Environment. The research team included scientists from RTI, Columbia University, Stanford University, Massachusetts Institute of Technology and Northeastern University, and was supported by the National Institute of Environmental Health Sciences (NIEHS) under the Exposure Biology Program (EBP).

"When NIEHS began the program, we had a goal of integrating technologies across aspects of the personal environment, from chemical exposures to physical activity to diet and stress," said David Balshaw, Ph.D., the program coordinator for the EBP. "We hoped that this integrated view would allow the environmental health community to test novel hypotheses and gain further insight into the connections between personal environment and disease. This publication is a demonstration that the vision was accurate; when we integrate measures of physical activity with particulate matter exposure we are able to analyze the health effects of exposure at a new level of sophistication."

In the innovative pilot program, participants wore prototype exposure monitors while conducting a variety of activities (sitting, standing, walking on a treadmill, climbing stairs, sweeping, etc.). By appropriately processing the motion data collected on the built-in accelerometer, the research team was able to reasonably predict breathing rates for a fairly wide range of typical daily activities.

The authors anticipate that the technology could help reduce the cost of linking exposures more closely with diseases that develop over a relatively short time period, such as cardiopulmonary diseases.

"Both the RTI and Columbia groups put accelerometers into their devices to monitor wearing compliance, but we always believed more could be done," said Steve Chillrud, Ph.D., a research professor at Columbia University and study co-author. "This technology is a game changer in exposure health studies. With adult ventilation rates varying by a factor of four across low to moderate activities, any study looking for associations with biomarkers or health outcomes should be better served by potential inhaled dose than with exposure concentrations."

The new approach is completely non-invasive for those wearing the personally sized exposure monitors, providing more accurate data without burdening those being studied.

The research finding could also significantly improve the strength of associations between exposure levels and adverse health responses across a wide range of studies. Supporting this observation, Matthew Longnecker, M.D., a principal investigator at NIEHS, noted that "In a study in South Africa, we will use exposure monitors with this embedded technology over 48-hour periods to assess both exposures and potential doses to characterize impacts from indoor air pollution from cookstoves. That should allow us to evaluate relationships with health outcomes more accurately."

The new technology will be extremely valuable for personal level sensors such as the RTI-developed MicroPEM device, a noninvasive particulate matter sensor that is small enough to fit into a shirt pocket. The upgraded RTI MicroPEM personal exposure monitor is already being used to study how children's exposures are linked to health in a variety of settings.

The accelerometric technology has also been applied to the black carbon personal monitor developed at Columbia University for both exposure and potential dose assessments. Black carbon is emitted into the air by a wide range of combustion sources, including biomass combustion and diesel engine exhaust.

Findings from both monitors are included in the new paper that can be viewed online.

Subscribe to ISHN Magazine

Related Articles

CleanSpace enters the Americas market with game-changing powered respiratory products

New program helps general industry, construction employers meet respiratory protection training requirements

New technology could help drivers avoid accidents

Related Products

Top Ten Pitfalls in OSHA Recordkeeping and How to Avoid Them

Related Directories

Magid

Blackline Safety

Subscribe For Free!
  • Digital Edition Subscriptions
  • ISHN eNewsletter & Other eNews Alerts
  • Online Registration
  • Subscription Customer Service

More Videos

Popular Stories

Today's News

2 young part-time UPS workers killed in California

Today's News

Steel worker injured at Indiana plant

crystal ball

Safety and health trends for 2020

Lendlease

Humorous workplace safety campaign features mothers

ergonomic

The most common office injuries and how to prevent them

ISHN Readers' Choice Awards 2020 product submissions


Events

March 7, 2019

Safety and Wellness: The Combination that Drives Engagement and Profitability

On Demand Attend this webinar for the keys to success, as well as mistakes to avoid, when targeting safety and wellness with a Recognition & Reward Program.

View All Submit An Event

ISHN Podcasts


ISHN Podcasts

ISHN Magazine

ISHN1219_cover.jpg

2019 December

Among the articles in the December 2019 issue of ISHN Magazine, we have expert insight on selecting the right respirator, a link to the 2020 Buyers’ & Resource Guide, 10 safety mistakes that can land you in a courtroom, and much more.
View More Create Account
  • Resources
    • List Rental
    • Safety A-Z
    • Custom Content & Marketing Services
    • Market Research
    • Web Exclusives
    • Privacy Policy
  • Want More
    • Connect
    • Subscribe
    • Survey And Sample

Copyright ©2019. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing